1. 用户空间和内核空间
关于内核态和用户态我们在 了解操作系统的那些事儿,从这篇文章开始 这篇文章中已经详细介绍过,这里不再过多赘述。
至于什么是系统空间和用户空间也非常好理解:在操作系统中,内存通常会被分成用户空间(User space)与内核空间(Kernel space)这两个部分。当进程/线程运行在用户空间时就处于用户态,运行在内核空间时就处于内核态:
- 运行在内核态的程序可以访问用户空间和内核空间,或者说它可以访问计算机的任何资源,不受限制,为所欲为,例如协调 CPU 资源,分配内存资源,提供稳定的环境供应用程序运行等
- 而应用程序基本都是运行在用户态的,或者说用户态就是提供应用程序运行的空间。运行在用户态的程序只能访问用户空间
那为什么要区分用户态和内核态呢?
其实早期操作系统是不区分用户态和内核态的,也就是说应用程序可以访问任意内存空间,如果程序不稳定常常会让系统崩溃,比如清除了操作系统的内存数据。为此大佬们设计出了一套规则:对于那些比较危险的操作需要切到内核态才能运行,比如 CPU、内存、设备等资源管理器程序就应该在内核态运行,否则安全性没有保证。
举个例子,对于文件系统和数据来说,文件系统数据和管理就必须放在内核态,但是用户的数据和管理可以放在用户态。
用户态的程序不能随意操作内核地址空间,这样有效地防止了操作系统程序受到应用程序的侵害。
那如果处于用户态的程序想要访问内核空间的话怎么办呢?就需要进行系统调用从用户态切换到内核态。
2. 操作系统线程
① 在用户空间中实现线程
在早期的操作系统中,所有的线程都是在用户空间下实现的,操作系统只能看到线程所属的进程,而不能看到线程。
从我们开发者的角度来理解用户级线程就是说:在这种模型下,我们需要自己定义线程的数据结构、创建、销毁、调度和维护等,这些线程运行在操作系统的某个进程内,然后操作系统直接对进程进行调度。
这种方式的好处一目了然,首先第一点,就是即使操作系统原生不支持线程,我们也可以通过库函数来支持线程;第二点,线程的调度只发生在用户态,避免了操作系统从内核态到用户态的转换开销。
当然缺点也很明显:由于操作系统看不见线程,不知道线程的存在,而 CPU 的时间片切换是以进程为维度的,所以如果进程中某个线程进行了耗时比较长的操作,那么由于用户空间中没有时钟中断机制,就会导致此进程中的其它线程因为得不到 CPU 资源而长时间的持续等待;另外,如果某个线程进行系统调用时比如缺页中断而导致了线程阻塞,此时操作系统也会阻塞住整个进程,即使这个进程中其它线程还在工作。
② 在内核空间中实现线程
所谓内核级线程就是运行在内核空间的线程, 直接由内核负责,只能由内核来完成线程的调度。
几乎所有的现代操作系统,包括 Windows、Linux、Mac OS X 和 Solaris 等,都支持内核线程。
每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就叫做多线程内核(Multi-Threads Kernel)。
从我们开发者的角度来理解内核级线程就是说:我们可以直接使用操作系统中已经内置好的线程,线程的创建、销毁、调度和维护等,都是直接由操作系统的内核来实现,我们只需要使用系统调用就好了,不需要像用户级线程那样自己设计线程调度等。