自从项目用了Disruptor,性能提升了许多!

缓存中的数据并不是独立的进行存储的,它的最小存储单位是缓存行,缓存行的大小是2的整数幂个字节,最常见的缓存行大小是 64 字节。CPU 为了执行的高效,会在读取某个对象时,从内存上加载 64 的整数倍的长度,来补齐缓存行。

以 Java 的 long 类型为例,它是 8 个字节,假设我们存在一个长度为 8 的 long 数组 arr,那么CPU 在读取 arr[0] 时,首先查询缓存,缓存没有命中,缓存就会去内存中加载。

由于缓存的最小存储单位是缓存行,64 字节,且数组的内存地址是连续的,则将 arr[0] 到 arr[7] 加载到缓存中。后续 CPU 查询 arr[6] 时候也可以直接命中缓存。

现在假设多线程情况下,线程 A 的执行者 CPU Core-1 读取 arr[1],首先查询缓存,缓存没有命中,缓存就会去内存中加载。

从内存中读取 arr[1] 起的连续的 64 个字节地址到缓存中,组成缓存行。由于从arr[1] 起,arr 的长度不足够 64 个字节,只够 56 个字节。假设最后 8 个字节内存地址上存储的是对象 bar,那么对象 bar 也会被一起加载到缓存行中。

现在有另一个线程 B,线程 B 的执行者 CPU Core-2 去读取对象 bar,首先查询缓存,发现命中了,因为 Core-1 在读取 arr 数组的时候也顺带着把 bar 加载到了缓存中。

这就是缓存行共享,听起来不错,但是一旦牵扯到了写入操作就不妙了。

假设 Core-1 想要更新 arr[7] 的值,根据 CPU 的 MESI 协议,那么它所属的缓存行就会被标记为失效。因为它需要告诉其他的 Core,这个 arr[7] 的值已经被更新了,缓存已经不再准确了,你必须得重新去内存拉取。但是由于缓存的最小单元是缓存行,因此只能把 arr[7] 所在的一整行给标识为失效。

此时 Core-2 就会很郁闷了,刚刚还能够从缓存中读取到对象 bar,现在再读取却被告知缓存行失效,必须得去内存重新拉取,延缓了 Core-2 的执行效率。

这就是缓存伪共享问题,两个毫无关联的线程执行,一个线程却因为另一个线程的操作,导致缓存失效。这两个线程其实就是对同一缓存行产生了竞争,降低了并发性。

【声明】:芜湖站长网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

相关文章