在过去的几年中,化学研究只专注于使用从个人经验和文献中获得的先前研究成果的进行试验的方法。尽管在文献中一直有很多反应和化学途径可供科学家使用,但在一系列反应/一系列反应中可能会发生许多不可预测的自发场景。这是化学研发需要时间和耐心才能产生结果的原因之一。
在过去的十年左右的时间里,计算化学领域一直在增长。尽管早在那之前,计算方法的使用还是很有限的,但是近年来,它已经成为优化和预测化学研究的非常强大的工具。现在,使用计算方法,化学家可以预测反应的工作方式,最佳参数、要使用的试剂和反应条件,甚至可以使用计算方法来预测他们计划制造的材料/分子的结构和性质。
因此,计算方法可以在整个概念、开发和分析过程中为化学家提供帮助。那么,为什么近年来使用量增加了?首先,化学家对计算化学有了更多的了解,并意识到它可以带来的好处。第二,更多科学家现在更容易获得支持这些模拟所需的计算能力。第三,机器学习算法的进步以及它们在计算化学过程中的集成,使得可以获得更准确的结果-实验进行时,成功的可能性更高。
将机器学习应用于化学过程
像许多实施机器学习的领域一样,它在计算化学领域的用途是从文献中获取所有已知数据,进行推断和分析,并预测最可能的结果。对于化学领域,这通常意味着从不同的反应中获取数据,例如试剂的类型、化学物质的浓度、工艺条件以及可以生产的产品。
所有这些数据都是有价值的,因为它们都是可以决定结果的因素,使反应物成为理想的输入集,而产物则成为输出。这些数据的使用可以被输入到机器学习算法中,并且可以用来做三件事。首先是通过使用现有数据,可以推断出化学结构形成的最可能原因(从反应/过程的角度来看),并且可以被工业界用来预测执行其所需功能的新分子。
第二种方法更多地与流程本身有关。有时,研究人员会想到一个产品,但不知道其过程。可以从以前的反应中获取数据并进行分析,这使算法能够预测哪些条件和试剂将负责分子中不同化学基团的形成。这使算法可以创建反应路径,该算法显示了逐步构建分子的最可能途径。
第三种方法是完整的分子设计方法,该方法以一个想法开始,但没有定义的产物或反应途径。这采用了其他两点的原则。尽管如此,除了一个变量(产物或反应)外,两者在技术上都是未知的,因此算法需要外推产物和反应条件,以产生可能的结果/途径。这是一项较难执行的任务,但受到了很多关注。